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ABSTRACT: In this paper circular, octagonal, hexagonal and rectangular antenna arrays for directionof-

arrival by using superresolution method MUSIC are considered. The problem of obtaining steering vectors and 

factor of complicated forms antenna arrays is considered. The steering vectors and array factors are derived by 

shifting and rotating a reference linear antenna array in space. The root mean square error (RMSE) rate of 

estimates of MUSIC method in azimuth-evaluation cases are estimated. Additionally the values are estimated in 

various noise environments and for various geometries of antenna arrays including ranging interelement 

spacing 0.5λ, 0.75λ, 1.5λ. 
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I. INTRODUCTION  
Direction-of-arrival estimation takes a great researching interest in such tasks as direction-finding, 

sonars and wireless communications and is used to determine radio sources [1]. The antenna arrays shapes used 

greatly have been studied like uniform linear arrays, rectangular and circular arrays. The main advantage of 

linear arrays for direction-findings is that has the narrow beam of the radiation pattern, but the scan is only 

capable for azimuth space. The application demanding as azimuth as elevation scanning makes use of planar 

arrays [2]. Today the papers devoted to comparative analysis of direction-of-arrival estimation via planar arrays, 

consider only one or two shapes of arrangements of elements [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. The main task of 

this paper is to begin deeply comparing the planar arrays for DOA estimation for the azimuth and elevation 

scanning. 

 

II. PROBLEM FORMULATION 
Antenna arrays consist of several antennas aligned and connected in space to form directional pattern. 

It is possible to scan and steer both the main beam and the nulls of the spatial pattern by changing feeding 

currents and phases of each antenna element. 

The arrays can be built with various geometrical configurations. Linear arrays have the simplest form 

and aligned along a straight line. Planar arrays have the elements placed on a plane. The planar arrays may be 

circular, rectangular or arbitrary form of element arrangements. Arrays, whose elements not spaced on a plane 

or lie on two or more planes, are conformal. 

The directional pattern of an array is defined by each element’s patter and their spatial arrangement, 

amplitude and phase of feeding currents. If each element has the isotropic pattern, then the array’s pattern is 

overall defined by the geometric form and feeding circuits. The spatial pattern is called an array factor. If each 

element has non-isotropic form and non-identical, then, according to the pattern multiplication principle, the 

array’s pattern can be calculated as multiplication of the array factor by the elements’ patterns. 

 

 
Figure 1. Antenna array of arbitrary form. 
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Fig. 1 shows an arbitrary array consisting of N antenna elements randomly arranged in space. Consider 

a narrowband signal s(t) on carrier frequency ω0 and having angular coordinates θ and ϕ relative to axes x and z 

respectively. Note that θ is azimuth coordinate and ϕ - elevation one. The signal can be expressed as [14]: 

 v(t))+(ωu(t)=(t)s 0cos~                                                                                   (1) 

where u(t) and v(t) - slowly changing functions of time. The narrowband signal assumes that the amplitude and 

the phase change slightly small while the waveform transfer from one antenna element to another, that is 

       









 v(t)+t

u(t)e=s(t)=v(t)+τtωu(t)τ)(ts
ωj

0
0 ReRecos~                     (2) 

As we can see from fig. 1, the delay depends on relative position of the antenna elements and angular 

coordinates of the signals. If we take the origin as the reference point and ith element has coordinates (xi, yi, zi) , 

then the delay τi of the signal at ith element relative to the origin can be expressed as [14]: 

  φz+θφy+θφxc=τ iiii coscossincossin1                                                             (3) 

where c - speed of light. As the signal is narrowband, then the delay τi produces the phase shift ξi = −τω0, that is 
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ω
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                                                                                (4) 

  φz+θφy+θφx
c

ω
=ξ iiii coscossincossin0                                                             (5) 

where λ - wavelength, ω0/c=2π/λ. And now, if the signal at an antenna element is described as x1 , x2 , . . . , xN , 

then the signal at the array outputs can be described in the vector form as: 

             tseee=txtxtx=t
T

N
jξjξjξT

N
 21

21x                               (6) 

Denote gi(ω, θ, ϕ) as amplification and phase shift of an antenna element depending on the frequency 

and signal source direction, then the analytical signal at the array outputs: 
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where    φθφθφ=k,k,k
λ

π
= zyx cos,cossin,cossin

2
k  - wavenumber, T

nnn
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n )(x= z ,y ,r  - radius-vector pointed 

to the nth antenna element. Then the array factor can be written as: 
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=n
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n λ)eθ(ωg=AF
0

 , , kr
                                                                                             (9) 

If a linear antenna array is located the way zero-th element coincides with the origin and oriented along 

the x axis, then it is possible to write for the first element r=[1,0,0] and θφ
λ

π
=T cossin

2
kr . The same actions 

can be done for the case when the antenna elements are located along both y and z. Then the array factor of the 

linear array can be written: 
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,                                                                                      (10) 

where β+γkd=Ψ cos , γ - angle between the axis of the linear array and the line from the origin to point of 

view and can be calculated as dot-product kr
T
. 

 

       
 a)  b) 

Figure 2. Antenna moving 

If the zeroth antenna element of an antenna array does not coincides with the origin and moved by d as 

shown in fig. 2(a), then the array factor turns out [15]: 
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If any kind of antenna array is moved by distance d in the direction γ, then the moved array’s factor is 

set by the equation (11) [15]. 

If an antenna array is located at an angle ϕ0 regarding to the x axis as shown in fig. 2(b), then the array 

factor [15]: 

    φzθ,φyθ,φxy,x=γ coscossincossin,0sincoscos 00                                        (12) 

  000 cossincossinsincossincoscos  θφ=θφ+θφ=γ
                                     

(13) 
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From equation (14) it is seen, that if the array factor directed along the x axis is represented as AFx (θ, 

ϕ) and the antenna array is rotated at angle ϕ0 to the y axis, then the array factor of the rotated array is set [15]: 

  0  ,AFAF xr                                                                                          (15) 

In order to calculate a planar array’s factor AFp, it is possible to make several combinations of rotated 

and moved copies of linear antenna arrays. If linear array’s factor placed along the x is designated as AFx, then 

by using the properties of the moved linear arrays and combining them, it is possible to get: 
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a) b) 

 

          
c)                                                                               d) 

Figure 3. Antenna array’s geometries 

 

The steering vectors and array factors are necessary to apply direction-finding tasks. However the 

equation of hexagonal arrays’ factor is very complicated [16], but of octagonal ones is absolutely absent. We 

can say, that an arbitrary multiple angular antenna array is summation of several moved and rotated linear 

arrays. Consider building a hexagonal array out of 24 antenna elements. The first side is going to consist of a 

linear antenna array and located along the x, then its factor will be: 
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Here N = 4 - the number of antenna elements along x-direction. The linear antenna array should be 

rotated at 60◦ and moved by 4d in order to calculate the second side’s factor. Using the properties (11) and (14), 

the second side’s factor is set as 
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The same way, the side 3 is rotated at 120◦ and after that moved by the distance 4d in the direction 30◦ 

regarding to the x axis. 
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The similar actions are carried out for the rest of the sides. As a result we get the exagonal antenna 

array factor (AFHEX): 
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So consider using the approach to derive the octagonal array’s factor (AFOCT ) and rectangular one 

(AFRECT ): 
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Using AFRECT, AFHEX , AFOCT, we can derive a steering vector to estimate direction-of-arrivals of 

signals. A steering vector of an octagonal array aoct can be written as: 
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Steering vectors of hexagonal ahex and rectangular arect can be obtained the same way as aoct from 

(23) and (25) respectively. Now we can write out signals compex vector of an arbitrary antenna array [2]: 

   )()( ttt nsAx


                                                                                                       (27) 

where x(t) - vector describing signals at output of each antenna element, s(t) - signals vector describing 

waveforms, n(t) - noise vector, A - matrix of stering vectors corresponding to signals DOA. Spatial correlation 

matrix can written by the following expression: 
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where k - time step and K - the number of samples, Es and En - matrices of signal and noise subspaces 

respectively, Λs and Λn - diagonal matrices of eigenvalues of the signal and noise subspaces respectively. So 

the spatial spectrum via superresolutional DOA estimation method MUSIC looks like [19]: 

   1
)()(),(
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MUSICP                                                                               (29) 

The denominator of (29) is equal to 0 and the expression PMUSIC(ϕ, θ) tends to infinity, in the ideal 

case, matching to the true signals coordinate estimates {ϕm, θm}M m −1. 



Accuracy researching of direction-of-arrival estimation via MUSIC for circular, … 

www.ijres.org                                                                12 | Page 

 

III. EXPERIMENTS 
Let’s make statistical measurements of MUSIC method in various scenarios. The range of signal-noise 

ratio (SNR) is from 15 dB up to 0 dB, the number of the averaging samples K of the spatial correlation matrix 

(28) is 100, the number of the iterations is 500. Root mean square error of bearings of direction-of-arrivals at 

azimuth and elevation from their true values is fulfilled. Circular, hexagonal, rectangular and octagonal antenna 

arrays (fig. 3) are compared with each other [17]. All the antennas consist of 24 antenna elements which are 

evenly spaced along the outer ring of radius r = (12/2π)λ, the distance between adjacent elements are changed in 

between 0.5λ, 0.75λ, 1.5λ. 

First, consider the case when only one signal arrives at the antennas. Location of the signal will be 

changed. Herein the signal will be placed on three various levels of elevation angles ϕ: 5◦, 85◦ and in the middle 

45◦. After fixing an elevation angle, azimuth coordinates θ will be changed from 0◦ up to 180◦. So that the 

dependence of RMSE on the signal’s position will be established for the considering arrays. SNR is equal to 

5dB in the experiment.  

 

Some conclusions can be made after viewing fig. 4: 

1. All the arrays slightly dependent on one signal azimuth location, because the shape of the antenna 

element arrangements is symmetric.  

2. In the case of one signal RMSE of estimates of MUSIC via all the arrays are almost equal to each 

other. The RMSE of the circular array is a bit less than the others have. 

3. If the area of an array gets bigger, RMSE goes down. From fig. 4 it is obviously seen, that ’blue’ 

curves, corresponding to the interelement spacing equal to 32 λ, have the smallest RMSE and the difference is 

very high, about 2°. 

4. The accuracy of DOA-estimation in azimuth-elevation scenario is highly determined by the source 

elevation angle. The different elevation positions are marked with different colors and it is clearly seen that 

’green’ curves have the highest RMSE, i.e. the worst accuracy is obtained when the signal source is far from the 

middle elevation angle. The best accuracy can be reached if the signal source is close to ϕ = 45°. 

So it can be said that the highest accuracy in DOA-estimation can be reached while using a large 

aperture antenna array, desirable via circular antenna array and if signal source would be located close to the 

middle elevation angle, i.e. ϕ = 45◦, independent of azimuth location. 

It is much useful studying multiple signals arriving at antenna arrays, because the scenario occurs more 

frequently in practical situations like indoor, even more in outdoor wireless network or radar applications while 

several targets bounds electromagnetic wave, etc. Consider two signal sources. Similar to the previous research, 

the two signals are located successively on the three elevation angles 10◦, 85◦and 45◦. 5◦ was replaced by 10◦ 

because in the former the performances of MUSIC are very poor. Here we change SNR in the range of 15 dB up 

to 0 dB. Azimuth positions are 25◦ and 35◦, in the case of ϕ = 10◦, the second source’s position was replaced by 

θ = 50◦ also because of the poor resolution. 

 

      
 a) One signal at circular array b) One signal at octagonal array 
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                 c) One signal at hexagonal array                                          d) One signal at rectangular array 

Figure 4. RMSE of one arriving signal at the antenna arrays 

 

    
                        a) Two signals at circular array                                 b) Two signals at octagonal array 

 

      
c) Two signals at hexagonal array                         d) Two signals at rectangular array 

Figure 5. RMSE of two arriving signals at the antenna arrays 

 

From curves in fig. 5, we can make some conclusions. First, the two arriving signals produce RMSE of 

the circular array which is less than others have. RMSE of MUSIC via the octagonal array is slightly higher, the 

hexagonal array gives highest RMSE, i.e. worse accuracy. The best accuracy can be obtained if the signal 

source’s location is in the middle of elevation plane, i.e. ϕ = 45◦. Additionally, good accuracy is obtained when 

the aperture of the antenna arrays gets bigger. If we take an antenna array with interelement distance is 3 2 λ and 

one with λ 2, smaller RMSE would be obtained via the bigger area antenna, i.e. 3 2 λ. The performances 

obtained via the rectangular antenna array is not representative because in the multiple signals scenario on the 

spatial spectrum a lot of false peaks appeared and their identifiability was not possible unlike the circular arrays 

[18]. But when it was possible and the spatial spectrum was free of false peaks, RMSE of the rectangular array 

was the smallest. 

 

IV. CONCLUSIONS 
The circular, octagonal, hexagonal and rectangular antenna arrays have been considered. These 

configurations of antenna element arrangements allow estimating signal sources on azimuth and elevation 

angles. In the author’s opinion, a common expression, allowing computation of the steering vectors and array 

factors of the planar antenna arrays of complicated and simple configurations is absent. So it was decided to 

make use of the approach of planar arrays forming, which based on shifting and rotating linear antenna arrays. 

As a result the array factor changes. The analytical and math basis of computing the steering vectors and array 
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factors of complicated planar arrays has been considered. The approach has been used to obtain both the 

octagonal, hexagonal, rectangular antenna arrays’ inspirations’ and DOA estimation performances. Based on the 

expressions, the research of the arrays aiming to directionof-arrival estimation via superresolutional method 

MUSIC has been fulfilled. 

After the simulation, it has been established that the more aperture or area of the antenna arrays the 

more accuracy of DOA estimation and consequently RMSE decreases. Considering the planar arrays (8-, 6-, 4- 

side and circular) it has been revealed that the dependence of RMSE on azimuth position is practically absent. 

Moreover the accuracy and RMSE is highly dependent on an elevation angle. The best accuracy and lowest 

RMSE are obtained if the signal source (one or more) is located close to the middle of elevation, i.e ϕ = 45◦. If 

signal(s) are somewhere far away from the middle (up or down), then RMSE increases. The accuracy of DOA 

estimation via circular or 8-, 6- side arrays are comparable between them, but the circular one has slightly less 

RMSE values. The rectangular arrays would have the bigger accuracy if they did not have too many false peaks 

on the spatial spectrum.  
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